中考网 发表于 2016-8-22 09:42:08

第八讲 根与系数的关系及应用

如果一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,那么

反过来,如果x1,x2满足x1+x2=p,x1x2=q,则x1,x2是一元二次方程x2-px+q=0的两个根.一元二次方程的韦达定理,揭示了根与系数的一种必然联系.利用这个关系,我们可以解决诸如已知一根求另一根、求根的代数式的值、构造方程、证明等式和不等式等问题,它是中学数学中的一个有用的工具.
  1.已知一个根,求另一个根
  利用韦达定理,我们可以通过方程的一个根,求出另一个根.
  例1 方程(1998x)2-1997?1999x-1=0的大根为a,方程x2+1998x-1999=0的小根为b,求a-b的值.
  解 先求出a,b.
  由观察知,1是方程(1998x)2-1997?1999x-1=0的根,于是由韦达

  又从观察知,1也是方程x2+1998x-1999=0的根,此方程的另一根为-1999,从而b=-1999.
  所以a-b=1-(-1999)=2000.
  例2 设a是给定的非零实数,解方程

 
  解 由观察易知,x1=a是方程的根.又原方程等价于
 


  

  2.求根的代数式的值
  在求根的代数式的值的问题中,要灵活运用乘法公式和代数式的恒等变形技巧.
  例3 已知二次方程x2-3x+1=0的两根为α,β,求:
  

  (3)α3+β3;(4)α3-β3.
  解 由韦达定理知
α+β=3,αβ=1.
  

  (3)α3+β3=(α+β)(α2-αβ+β2)
       =(α+β)[(α+β)2-3αβ]
       =3(9-3)=18;
  (4)α3-β3=(α-β)(α2+αβ+β2)
       =(α-β)[(α+β)2-αβ]
      

  例4 设方程4x2-2x-3=0的两个根是α和β,求4α2+2β的值.
  解 因为α是方程4x2-2x-3=0的根,所以
4α2-2α-3=0,

4α2=2α+3.

4α2+2β=2α+3+2β=2(α+β)+3=4.
  例5 已知α,β分别是方程x2+x-1=0的两个根,求2α5+5β3的值.
  解 由于α,β分别是方程x2+x-1=0的根,所以
α2+α-1=0,β2+β-1=0,
即 α2=1-α,β2=1-β.
     α5=(α2)2?α=(1-α)2α=(α2-2α+1)α
      =(1-α-2α+1)α=-3α2+2α
      =-3(1-α)+2α=5α-3,
     β3=β2?β=(1-β)β=β-β2
       =β-(1-β)=2β-1.
所以
     2α5+5β3=2(5α-3)+5(2β-1)
          =10(α+β)-11=-21.
  说明 此解法的关键在于利用α,β是方程的根,从而可以把它们的幂指数降次,最后都降到一次,这种方法很重要.
  例6 设一元二次方程ax2+bx+c=0的两个实根的和为s1,平方和为s2,立方和为s3,求as3+bs2+cs1的值.
  解 设x1,x2是方程的两个实根,于是
 


所以      as3+bs2+cs1=0.
  说明 本题最“自然”的解法是分别用a,b,c来表示s1,s2,s3,然后再求as3+bs2+cs1的值.当然这样做运算量很大,且容易出错.下面我们再介绍一种更为“本质”的解法.
  另解 因为x1,x2是方程的两个实根,所以
 


同理
         

将上面两式相加便得
as3+bs2+cs1=0.
  3.与两根之比有关的问题
  例7 如果方程ax2+bx+c=0(a≠0)的根之比等于常数k,则系数a,b,c必满足:
kb2=(k+1)2ac.
  证 设方程的两根为x1,x2,且x1=kx2,由韦达定理

由此两式消去x2得
         


kb2=(k+1)2ac.
  例8 已知x1,x2是一元二次方程
4x2-(3m-5)x-6m2=0

  解 首先,△=(3m-5)2+96m2>0,方程有两个实数根.由韦达定理知
 


 

从上面两式中消去k,便得
           

即       m2-6m+5=0,
所以 m1=1,m2=5.
  4.求作新的二次方程
  例9 已知方程2x2-9x+8=0,求作一个二次方程,使它的一个根为原方程两根和的倒数,另一根为原方程两根差的平方.
  解 设x1,x2为方程2x2-9x+8=0的两根,则
/collect/201608/18/162428_4c5b5f46593be59.jpg
设所求方程为x2+px+q=0,它的两根为x'1,x'2,据题意有
/collect/201608/18/162428_4c5b5f4659f7459.jpg

   
/collect/201608/18/162428_4c5b5f465ab2b59.jpg
所以,求作的方程是
36x2-161x+34=0.
  例10 设x2-px+q=0的两实数根为α,β.
  (1)求以α3,β3为两根的一元二次方程;
  (2)若以α3,β3为根的一元二次方程仍是x2-px+q=0,求所有这样的一元二次方程.
解 (1)由韦达定理知
α+β=p,αβ=q,
所以
α3+β3=(α+β)[(α+β)2-3αβ]=p(p2-3q),
α3?β3=(αβ)3=q3.
所以,以α3,β3为两根的一元二次方程为
x2-p(p2-3q)x+q3=0.
  (2)由(1)及题设知
          
/collect/201608/18/162428_4c5b5f465b72759.jpg
由②得q=0,±1.若q=0,代入①,得p=0,±1;若q=-1,代入①,
/collect/201608/18/162428_4c5b5f465c29759.jpg
以,符合要求的方程为
x2=0,x2-x=0,x2+x=0,x2-1=0.
  5.证明等式和不等式
  利用韦达定理可以证明一些等式和不等式,这常常还要用判别式来配合.
  例11 已知实数x,y,z满足
x=6-y,z2=xy-9,
求证:x=y.
  证 因为x+y=6,xy=z2+9,所以x,y是二次方程
t2-6t+(z2+9)=0
的两个实根,于是这方程的判别式
△=36-4(z2+9)=-4z2≥0,
即z2≤0.因z为实数,显然应有z2≥0.要此两式同时成立,只有z=0,从而△=0,故上述关于t的二次方程有等根,即x=y.
  例12 若a,b,c都是实数,且
a+b+c=0,abc=1,
/collect/201608/18/162428_4c5b5f465ce4e59.jpg
  证 由a+b+c=0及abc=1可知,a,b,c中有一个正数、两个负数,不妨设a是正数,由题意得
/collect/201608/18/162428_4c5b5f465dded59.jpg
于是根据韦达定理知,b,c是方程
                
/collect/201608/18/162430_4c5b5f465e9a359.jpg
的两个根.又b,c是实数,因此上述方程的判别式
/collect/201608/18/162430_4c5b5f465f55959.jpg
因为a>0,所以
a3-4≥0,a3≥4,
 
/collect/201608/18/162430_4c5b5f466011059.jpg

/collect/201608/18/162430_4c5b5f4660cc759.jpg
  例13 知x1,x2是方程4ax2-4ax+a+4=0的两个实根.
  
/collect/201608/18/162430_4c5b5f466187d59.jpg
 
  
/collect/201608/18/162430_4c5b5f466243359.jpg
  解 (1)显然a≠0,由△=16a2-16a(a+4)≥0,得a<0.由韦达定理知
/collect/201608/18/162430_4c5b5f4662fe959.jpg
所以
 
/collect/201608/18/162430_4c5b5f4663ba059.jpg
/collect/201608/18/162432_4c5b5f466475659.jpg
 
/collect/201608/18/162432_4c5b5f466530d59.jpg
所以a=9,这与a<0矛盾.故不存在a,使
/collect/201608/18/162432_4c5b5f4665ec359.jpg
(2)利用韦达定理
        
/collect/201608/18/162432_4c5b5f4666a7a59.jpg
所以(a+4)|16,即a+4=±1,±2,±4,±8,±16.结合a<0,得a=-2,-3,-5,-6,-8,-12,-20.

练习八

  1.选择:
  (1)若x0是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式△=b2-4ac与平方式M=(2ax0+b)2的关系是 [   ]
   (A)△>M       (B)△=M
   (C)△=<M       (D)不确定
  (2)方程x2+px+1997=0恰有两个正整数根x1,x2,则
/collect/201608/18/162432_4c5b5f466763559.jpg
 
  
/collect/201608/18/162432_4c5b5f466861459.jpg
 
  
/collect/201608/18/162432_4c5b5f466918659.jpg
[   ]
   (A)-4      (B)8
   (C)6       (D)0
  
/collect/201608/18/162434_4c5b5f4669d3f59.jpg
为 [   ]
   (A)3       (B)-11
   (C)3或-11     (D)11
  2.填空:
  (1)如果方程x2+px+q=0的一根为另一根的2倍,那么,p,q满足的关系式是______.
  (2)已知关于x的一元二次方程ax2+bx+c=0没有实数根,甲由于看错了二次项系数,误求得两根为2和4,乙由于看错了某一项系数的符号,
/collect/201608/18/162434_4c5b5f466a93a59.jpg
 
  
/collect/201608/18/162434_4c5b5f466b7fc59.jpg
1993+5a2+9a4=_______.
  (4)已知a是方程x2-5x+1=0的一个根,那么a4+a-4的末位数是______.
  
/collect/201608/18/162434_4c5b5f466c3b259.jpg
另一根为直角边a,则此直角三角形的第三边b=______.
  3.已知α,β是方程x2-x-1=0的两个实数根,求α4+3β的值.
  4.作一个二次方程,使它的两个根α,β是正数,并且满足关系式
<IMG s
页: [1]
查看完整版本: 第八讲&nbsp;根与系数的关系及应用