初中数学有关圆的知识点汇总
初中数学有关圆的知识点汇总:1.圆的定义:
(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.
(2)圆是到定点的距离等于定长的点的集合.
2.判定一个点P是否在⊙O上.
设⊙O的半径为R,OP=d,则有
d>r点P在⊙O外;
d=r点P在⊙O上;
d
(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.
弦切角的性质:弦切角等于它夹的弧所对的圆周角.
弦切角的度数等于它夹的弧的度数的一半.
4.圆的性质:
(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.
在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.
(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.
垂径定理及推论:
①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
③弦的垂直平分线过圆心,且平分弦对的两条弧.
④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.
⑤平行弦夹的弧相等.
5.三角形的内心、外心、重心、垂心
(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.
(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.
(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.
(4)垂心:是三角形三边高线的交点.
6.切线的判定、性质:
(1)切线的判定:
①经过半径的外端并且垂直于这条半径的直线是圆的切线.
②到圆心的距离d等于圆的半径的直线是圆的切线.
(2)切线的性质:
①圆的切线垂直于过切点的半径.
②经过圆心作圆的切线的垂线经过切点.
③经过切点作切线的垂线经过圆心.
(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.
(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
7.圆内接四边形和外切四边形
(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.
(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.
8.直线和圆的位置关系:
设⊙O半径为R,点O到直线l的距离为d.
(1)直线和圆没有公共点直线和圆相离d>R.
(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.
(3)直线l和⊙O有两个公共点直线l和⊙O相交dr),圆心距.
(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.
(2)没有公共点,且的每一个点都在外部内含d
页:
[1]