2017广东省中考数学最新考纲(2017版)
2017年广东省初中毕业生数学学科学业考试大纲考试性质
初中毕业生数学学科学业考试(以下简称为“数学学科学业考试”)是义务教育阶段数学学科的终结性考试,目的是全面、准确地反映初中毕业生的数学学业水平.考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据之一。
指导思想
(一)数学学科学业考试要体现《义务教育数学课程标准(2011年版)》(以下简称《标准》)的评价理念,有利于引导数学教学全面落实《标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于减轻过重的学业负担。
(二)数学学科学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价。
(三)数学学科学业考试命题应当面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展。
考试依据
(一)教育部2002年颁发的《关于积极推进中小学评价与考试制度改革的通知》。
(二)教育部2011年颁发的《义务教育数学课程标准(2011年版)》。
(三)广东省初中数学教学的实际情况。
考试要求
(一)以《标准》中的“课程内容”为基本依据,不拓展知识与技能的考试范围,不提高考试要求,选学内容不列入考试范围。
(二)试题主要考查如下方面:基础知识和基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等。
(三)突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能重点考查。
(四)试卷内容大致比例:代数约占60分;几何约占50分;统计与概率约占10分。
考试内容
第一部分数与代数
1.数与式
(1)有理数
①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).
④理解有理数的运算律,并能运用运算律简化运算.
⑤能运用有理数的运算解决简单的问题.
(2)实数
①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.
②了解乘方与开方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.
③了解无理数和实数的概念,知道实数与数轴上的点一一对应.能求实数的相反数与绝对值.
④能用有理数估计一个无理数的大致范围.
⑤了解近似数;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.
⑥了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算.能掌握形如:,的化简与运算(分母有理化).
(3)代数式
①能借助现实情境了解代数式,进一步理解用字母表示数的意义.
②能分析简单问题的数量关系,并用代数式表示.
③会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.
(4)整式与分式
①了解整数指数幂的意义和基本性质,会用科学计数法表示数(包括在计算器上表示).
②了解整式的概念,掌握合并同类项和去括号法则,会进行简单的整式加法和减法运算;能进行简单的整式乘法(其中的多项式相乘仅指一次式之间以及一次式与二次式相乘).
③会推导乘法公式:(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2,了解公式的几何背景,并能利用公式进行简单的计算.
④会用提取公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数).
⑤了解分式和最简分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.
2.方程与不等式
(1)方程与方程组
①能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型.
②经历估计方程解的过程.
③掌握等式的基本性质.
④会解一元一次方程、可化为一元一次方程的分式方程(方程中的分式不超过两个).
⑤掌握代入消元法和加减消元法,能解二元一次方程组.
⑥理解配方法,会用配方法、公式法、因式分解法解数字系数的一元二次方程.
⑦会用一元二次方程根的判别式判别方程是否有实数根和两个根之间是否相等.
⑧能根据具体问题的实际意义,检验方程的解是否合理.
(2)不等式与不等式组
①结合具体问题,了解不等式的意义,探索不等式的基本性质.
②会解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集,
③能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题.
3.函数
(1)函数
①通过简单实例中的数量关系,了解常量、变量的意义.
②结合实例,了解函数的概念和三种表示方法,能举出函数的实例.
③能结合图象对简单实际问题中的函数关系进行分析.
④能确定简单实际问题中函数自变量的取值范围,并会求出函数值.
⑤能用适当的函数表示法刻画简单实际问题中变量之间的关系.
⑥结合对函数关系的分析,能对变量的变化情况进行初步讨论.
(2)一次函数
①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.
②会利用待定系数法确定一次函数的表达式.
③能画出一次函数的图象,根据一次函数的图象和表达式y=kx+b(k≠0)探索并理解k>0或k0或k
(4)二次函数
①通过对实际问题情境的分析,体会二次函数的意义.
②会用描点法画出二次函数的图象,能通过图象了解二次函数的性质.
③会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k(a≠0)的形式,并能由此得到二次函数图象的顶点坐标、开口方向,画出图象的对称轴,并能解决简单实际问题.
④会利用二次函数的图象求一元二次方程的近似解.
第二部分空间与图形
1.图形的认识
(1)点、线、面、角
①通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等.
②会比较线段的长短,理解线段的和、差以及线段中点的意义.
③掌握基本事实:两点确定一条直线.
④掌握基本事实:两点之间线段最短.
⑤理解两点间距离的意义,能度量两点间距离.
⑥理解角的概念,能比较角的大小.
⑦认识度、分、秒,会对度、分、秒进行简单换算,并会计算角的和、差.
(2)相交线与平行线
①理解对顶角、余角、补角的概念,探索并掌握对顶角相等,同角(等角)的余角相等,同角(等角)的补角相等的性质.
②理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线.
③理解点到直线距离的意义,能度量点到直线的距离.
④掌握过一点有且仅有一条直线与已知直线垂直.
⑤识别同位角、内错角、同旁内角;掌握平行线概念:掌握两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
⑥掌握过直线外一点有且只有一条直线与这条直线平行.
⑦掌握两条平行直线被第三条直线所截,同位角相等.
⑧能用三角尺和直尺过已知直线外一点画这条直线的平行线.
⑨探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么这两条直线平行;探索并证明平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补).
⑩了解平行于同一条直线的两条直线平行.
(3)三角形
①理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性.
②探索并证明三角形内角和定理,掌握该定理的推论:三角形的外角等于与它不相邻的两个内角的和.证明三角形的任意两边之和大于第三边.
③理解全等三角形的概念,能识别全等三角形中的对应边、对应角.
④掌握两边及其夹角分别相等的两个三角形全等、两角及其夹边分别相等的两个三角形全等、三边分别相等的两个三角形全等等基本事实,并能证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等.
⑤探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边的距离相等的点在角的平分线上.
⑥理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端点的距离相等;反之,到线段两端的距离相等的点在线段的垂直平分线上.
⑦理解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两个底角相等,底边上的高线、中线及顶角平分线重合,探索并掌握等腰三角形的判定定理:有两个底角相等的三角形是等腰三角形.探索等边三角形的性质定理:等边三角形的各角都等于60°.探索等边三角形的判定定理:三个角都相等的三角形(或仅有一个角是60°的等腰三角形)是等边三角形.
⑧了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半,掌握有两个角互余的三角形是直角三角形.
⑨探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题:探索并掌握判定直角三角形全等的“斜边、直角边”定理.
⑩了解三角形重心的概念.
(4)四边形
①了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式.
②理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性.
③探索并证明平行四边形的有关性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.
④了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
⑤探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形.正方形具有矩形和菱形的一切性质.
⑥探索并证明三角形中位线定理.
(5)圆
①理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念:探索并了解点与圆的位置关系.
②探索圆周角与圆心角及其所对的弧的关系,了解并证明圆周角及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补.
③知道三角形的内心和外心.
④了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径的关系,会用三角尺过圆上一点画圆的切线.
⑤会计算圆的弧长、扇形的面积.
(6)尺规作图
①能用尺规完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线.
②会利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边和底边上的高作等腰三角形;已知一直角边和斜边作直角三角形.
③会利用基本作图完成:过不在同一直线上的三点作圆;会作三角形的外接圆、内切圆,作圆的内接正方形和正六边形.
④在尺规作图中,了解尺规作图的道理,保留作图痕迹,不要求写作法.
(7)定义、命题、定理
①通过具体实例,了解定义、命题、定理、推论的意义.
②结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.
③知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程中可以有不同的表达形式,会综合法证明的格式.
④了解反例的作用,知道利用反例可以判断一个命题是错误的.
⑤通过实例体会反证法的含义.
2.图形与变换
(1)图形的轴对称
①通过具体实例认识轴对称,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分.
②能画出简单平面图形关于给定对称轴的对称图形,
③了解轴对称图形的概念:探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质
④认识并欣赏自然界和现实生活中的轴对称图形.
(2)图形的旋转
①通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点分别与旋转中心连线所成的角相等,
②了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分,
③探索线段、平行四边形、正多边形、圆的中心对称性质.
④认识并欣赏自然界和现实生活中的中心对称图形.
(3)图形的平移
①通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得到的图形中,两组对应点的连线平行(或在同一条直线上)且相等.
②认识并欣赏平移在自然界和现实生活中的应用.
(4)图形的相似
①了解比例的性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割.
②通过具体实例认识图形的相似,了解相似多边形和相似比.
③掌握两条直线被一组平行线所截,所得的对应线段成比例.
④了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.
⑤了解两个三角形相似的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似.
⑥了解图形的位似,知道利用位似将一个图形放大或缩小.
⑦会用图形的相似解决一些简单的实际问题.
⑧利用相似的直角三角形,探索并认识锐角三角函数(sinA,cosA,tanA),知道30°、45°、60°角的三角函数值.
⑨会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.
⑩能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题.
(5)图形的投影
①通过丰富的实例,了解中心投影和平行投影的概念.
②会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,会判断简单物体的三视图,能根据三视图描述简单的几何体.
③了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型.
④通过实例,了解上述视图与展开图在现实生活中的应用.
页:
[1]