初中数学知识点——二次函数顶点坐标公式
函数在数学中占有很大的比例,但是函数的学习却很复杂。其考察的内容有很多方面,开口方向、对称轴及坐标公式都是考察的重点。下面小编为大家整理了二次函数顶点坐标的相关公式,希望能帮到大家。一、基本简介
一般地,我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。
主要特点
“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别.如同函数不等于函数关系。
二次函数图像与X轴交点的情况
当△=b2-4ac>0时,函数图像与x轴有两个交点。
当△=b2-4ac=0时,函数图像与x轴只有一个交点。
当△=b2-4ac
顶点
二次函数图像有一个顶点P,坐标为P(h,k)即(-b/2a,(4ac-b2/4a).
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)2+k。
h=-b/2a,k=(4ac-b2)/4a。
开口方向和大小
二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,抛物线向上开口;当a0,与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是-b/2a0,与b异号时(即ab0,所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab
与x轴交点个数
a0或a>0;k0,k>0时,二次函数图像与X轴无交点。
当a>0时,函数在x=h处取得最小值ymin=k,在xh范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
当ah范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y
页:
[1]