中考网 发表于 2016-6-30 16:50:41

初中几何中空间与图形(二)

  矩形的判定:
       
          ①有三个角是直角的四边形是矩形;
       
          ②对角线相等的平行四边形是矩形;
       
          菱形的特征:(除具有平行四边形所有性质外
       
          ①菱形的四边相等;
       
          ②菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;
       
          菱形的判定:
       
          四边相等的四边形是菱形;
       
          正方形的特征:
       
          ①正方形的四边相等;
       
          ②正方形的四个角都是直角;
       
          ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;
       
          正方形的判定:
       
          ①有一个角是直角的菱形是正方形;
       
          ②有一组邻边相等的矩形是正方形。
       
          等腰梯形的特征:
       
          ①等腰梯形同一底边上的两个内角相等
       
          ②等腰梯形的两条对角线相等。
       
          等腰梯形的判定:
       
          ①同一底边上的两个内角相等的梯形是等腰梯形;
       
          ②两条对角线相等的梯形是等腰梯形。
       
          平面图形的镶嵌:
       
          任意一个三角形、四边形或正六边形可以镶嵌平面;

zkthree 发表于 2016-6-30 17:04:44


       

               
          (5)圆
       
          点与圆的位置关系(设圆的半径为r,点P到圆心O的距离为d):
       
          ①点P在圆上,则d=r,反之也成立;
       
          ②点P在圆内,则dr,反之也成立;
       
          圆心角、弦和弧三者之间的关系:在同圆或等圆中,圆心角、弦和弧三者之间只要有一组相等,可以得到另外两组也相等;
       
          圆的确定:不在一直线上的三个点确定一个圆;
       
          垂径定理(及垂径定理的推论):垂直于弦的直径平分弦,并且平分弦所对的两条弧;
       
          平行弦夹等弧:圆的两条平行弦所夹的弧相等;
       
          圆心角定理:圆心角的度数等于它所对弧的度数;
       
          圆心角、弧、弦、弦心距之间的关系定理及推论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等;
       
          推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量分别相等;
       
          圆周角定理:圆周角的度数等于它所对的弧的度数的一半;
       
          圆周角定理的推论:直径所对的圆周角是直角,反过来,的圆周角所对的弦是直径;
       
          切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;
       
          切线的性质定理:圆的切线垂直于过切点的半径;
       
          切线长定理:从圆外一点引圆的两条切线,这一点到两切点的线段相等,它与圆心的连线平分两切线的夹角;
       
          (6)尺规作图(基本作图、利用基本图形作三角形和圆)
       
          作一条线段等于已知线段,作一个角等于已知角;作已知角的平分线;作线段的垂直平分线;过一点作已知直线的垂线;
       
          (7)视图与投影
       
          画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图);
       
          基本几何体的展开图(除球外)、根据展开图判断和设别立体模型;
       
          2.图形与变换
       
          图形的轴对称
       
          轴对称的基本性质:对应点所连的线段被对称轴平分;
       
          等腰三角形、矩形、菱形、等腰梯形、正多边形、圆是轴对称图形;
       
          图形的平移
       
          图形平移的基本性质:对应点的连线平行且相等;
       
          图形的旋转
       
          图形旋转的基本性质:对应点到旋转中心的距离相等,对应点与旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等;
       
          平行四边形、矩形、菱形、正多边形(边数是偶数)、圆是中心对称图形;
       
          图形的相似
       
          相似三角形的设别方法:①两组角对应相等;②两边对应成比例且夹角对应相等;③三边对应成比例
       
          相似三角形的性质:①相似三角形的对应角相等;②相似三角形的对应边成比例;③相似三角形的周长之比等于相似比;④相似三角形的面积比等于相似比的平方;
       
          相似多边形的性质:
       
          ①相似多边形的对应角相等;②相似多边形的对应边成比例;
       
          ③相似多边形的面积之比等于相似比的平方;
       
          图形的位似与图形相似的关系:两个图形相似不一定是位似图形,两个位似图形一定是相似图形;
页: [1]
查看完整版本: 初中几何中空间与图形(二)