当前位置:辅导资料 > 初中辅导 > 中考辅导 > 中考数学辅导 > 2016中考数学模拟测试题之矩形菱形

2016中考数学模拟测试题之矩形菱形

来源:热心网友    时间:2016-05-05 17:02:42

15.(2014•毕节地区,第8题3分)如图,菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于( )

A. 3.5 B. 4 C. 7 D. 14

考点: 菱形的性质;直角三角形斜边上的中线;三角形中位线定理

分析: 根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH= AB.

解答: 解:∵菱形ABCD的周长为28,

∴AB=28÷4=7,OB=OD,

∵H为AD边中点,

∴OH是△ABD的中位线,

∴OH= AB= ×7=3.5.

故选A.

点评: 本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.

16.(2014•襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(  )

A. ①② B. ②③ C. ①③ D. ①④

考点: 翻折变换(折叠问题);矩形的性质

分析: 求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF= PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,判断出④正确.

解答: 解:∵AE= AB,

∴BE=2AE,

由翻折的性质得,PE=BE,

∴∠APE=30°,

∴∠AEP=90°﹣30°=60°,

∴∠BEF= (180°﹣∠AEP)= (180°﹣60°)=60°,

∴∠EFB=90°﹣60°=30°,

∴EF=2BE,故①正确;

∵BE=PE,

∴EF=2PE,

∵EF>PF,

∴PF>2PE,故②错误;

由翻折可知EF⊥PB,

∴∠EBQ=∠EFB=30°,

∴BE=2EQ,EF=2BE,

∴FQ=3EQ,故③错误;

由翻折的性质,∠EFB=∠BFP=30°,

∴∠BFP=30°+30°=60°,

∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,

∴∠PBF=∠PFB=60°,

∴△PBF是等边三角形,故④正确;

综上所述,结论正确的是①④.

故选D.

点评: 本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.

17.(2014•孝感,第9题3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是(  )

A. (2,10) B. (﹣2,0) C. (2,10)或(﹣2,0) D. (10,2)或(﹣2,0)

考点: 坐标与图形变化-旋转.

分析: 分顺时针旋转和逆时针旋转两种情况讨论解答即可.

解答: 解:∵点D(5,3)在边AB上,

∴BC=5,BD=5﹣3=2,

①若顺时针旋转,则点D′在x轴上,OD′=2,

所以,D′(﹣2,0),

②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,

所以,D′(2,10),

综上所述,点D′的坐标为(2,10)或(﹣2,0).

故选C.

点评: 本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.

18.(2014•台湾,第12题3分)如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为何?(  )

A.16 B.24 C.36 D.54

分析:由于△ADC=△AGC﹣△ADG,根据矩形的性质和三角形的面积公式计算即可求解.

解:△ADC=△AGC﹣△ADG=12×AG×BC﹣12×AG×BF

=12×8×(6+9)﹣12×8×9=60﹣36=24.

故选:B.

点评:考查了三角形的面积和矩形的性质,本题关键是活用三角形面积公式进行计算.

19.(2014•台湾,第27题3分)如图,矩形ABCD中,AD=3AB,O为AD中点,是半圆.甲、乙两人想在上取一点P,使得△PBC的面积等于矩形ABCD的面积其作法如下:

(甲) 延长BO交于P点,则P即为所求;

(乙) 以A为圆心,AB长为半径画弧,交于P点,则P即为所求.

对于甲、乙两人的作法,下列判断何者正确?(  )

A.两人皆正确 B.两人皆错误 C.甲正确,乙错误 D.甲错误,乙正确

分析:利用三角形的面积公式进而得出需P甲H=P乙K=2AB,即可得出答案.

解:要使得△PBC的面积等于矩形ABCD的面积,

需P甲H=P乙K=2AB.

故两人皆错误.

故选:B.

点评:此题主要考查了三角形面积求法以及矩形的性质,利用四边形与三角形面积关系得出是解题关键.

20.(2014•浙江宁波,第6题4分)菱形的两条对角线长分别是6和8,则此菱形的边长是( )

A. 10 B. 8 C. 6 D. 5

考点: 菱形的性质;勾股定理.

分析: 根据菱形的性质及勾股定理即可求得菱形的边长.

解答: 解:∵四边形ABCD是菱形,AC=8,BD=6,

∴OB=OD=3,OA=OC=4,AC⊥BD,

在Rt△AOB中,

由勾股定理得:AB= = =5,

即菱形ABCD的边长AB=BC=CD=AD=5,

故选D.

点评: 本题考查了菱形的性质和勾股定理,关键是求出OA、OB的长,注意:菱形的对角线互相平分且垂直.

21.(2014•浙江宁波,第11题4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )

A. 2.5 B.

C.

D. 2

考点: 直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.

分析: 连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.

解答: 解:如图,连接AC、CF,

∵正方形ABCD和正方形CEFG中,BC=1,CE=3,

∴AC= ,CF=3 ,

∠ACD=∠GCF=45°,

∴∠ACF=90°,

由勾股定理得,AF= = =2 ,

∵H是AF的中点,

∴CH= AF= ×2 = .

故选B.

点评: 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.

22.(2014•呼和浩特,第9题3分)已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为(  )

A. △CDE与△ABF的周长都等于10cm,但面积不一定相等

B. △CDE与△ABF全等,且周长都为10cm

C. △CDE与△ABF全等,且周长都为5cm

D. △CDE与△ABF全等,但它们的周长和面积都不能确定

考点: 矩形的性质;全等三角形的判定与性质;线段垂直平分线的性质.

分析: 根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.

解答: 解:∵AO=CO,EF⊥AC,

∴EF是AC的垂直平分线,

∴EA=EC,

∴△CDE的周长=CD+DE+CE=CD+AD= 矩形ABCD的周长=10cm,

同理可求出△ABF的周长为10cm,

根据全等三角形的判定方法可知:△CDE与△ABF全等,

故选B.

点评: 本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.

23. (2014•株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是(  )

A. 选①② B. 选②③ C. 选①③ D. 选②④

考点: 正方形的判定;平行四边形的性质.

分析: 要判定是正方形,则需能判定它既是菱形又是矩形.

解答: 解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;

B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;

C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;

D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.

故选B.

点评: 本题考查了正方形的判定方法:

①先判定四边形是矩形,再判定这个矩形有一组邻边相等;

②先判定四边形是菱形,再判定这个矩形有一个角为直角.

③还可以先判定四边形是平行四边形,再用1或2进行判定.

2016中考数学模拟测试题之矩形菱形学大教育网为大家带来过了,希望大家能够利用好上面的内容,从而在中考中取得好的数学成绩。

热点聚焦: 中考数学 中考数学模拟

辅导课程推荐

课程名称
适用学员
开/闭班时间
课时
科目
购买

冲刺辅导资料

小升初
中考
高考

辅导资料导航

小学辅导资料
一年级辅导二年级辅导三年级辅导四年级辅导五年级辅导六年级辅导
初中辅导资料
初一辅导初二辅导初三辅导中考辅导
高中辅导资料
高一辅导高二辅导高三辅导高考辅导

热门资料

用微信扫一扫

学大教育