中考网 发表于 2016-7-27 00:17:18

多边形内角和问题的求解技巧

1、多边形的每个内角与和它相邻的外角互为补角。这个条件在题目中一般不会作为已知条件给出,因此,在解题时应根据需要加以利用。
             例1一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,求此正多边形的边数。
             分析:由于这个正多边形的每个外角与和它相邻的内角互为邻补角,根据题意,可先求出外角的大小,再求边数。
             解:设每个外角的大小为x°,则与它相邻的内角的大小为(3x+20)度。根据题意,得
             

             解得

,即每个外角都等于40°。
             所以

,即这个正多边形的边数为9。
          2、利用多边形内角和公式求多边形的边数时,经常设边数为n,然后列出方程或不等式,利用代数方法解决几何问题。
             例2已知一个多边形的每个内角都等于135°,求这个多边形的边数。
             解法1:设多边形的边数为n,依题意,得
       

        解得n=8,即这个多边形的边数为8。
        解法2:依题意知,这个多边形的每个外角是180°-135°=45°。
        所以,多边形的边数

,即这个多边形的边数为8。
          3、正多边形各内角相等,因此各外角也相等。有时利用这种隐含关系求多边形的边数,比直接利用内角和求边数简捷(如上题解法2)。解题时要注意这种逆向思维的运用。
        例3一个多边形除去一个内角后,其余内角之和是2570°,求这个多边形的边数。
        分析:从已知条件可知这是一个与多边形内角和有关的问题。由于除去一个内角后,其余内角之和为2570°,故该多边形的内角和比2570°大。又由相邻内、外角间的关系可知,内角和比2570°+180°小。可列出关于边数n的不等式,先确定边数n的范围,再求边数。
        解:设这个多边形的边数为n,则内角和为(n-2)·180°。依题意,得
       

        解这个不等式,得


        所以n=17,即这个多边形的边数为17。
        说明:这类题都隐含着边数为正整数这个条件。
          4、把不规则图形转化为规则图形是研究不规则图形的常用方法,其解题关键是构造合适的图形。
             例4如图1,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的大小。
       

        图1
             分析:解题关键是把该图形与凸多边形联系起来,从而利用多边形内角和定理来解决,因此可考虑连接CF。
             解:连接CF。
             ∵∠COF=∠DOE
             ∴∠1+∠2=∠OCF+∠OFC
             ∴∠1+∠2+∠3+∠4+∠5+∠6+∠7
             =∠OCF+∠OFC+∠3+∠4+∠5+∠6+∠7
             =(5-2)×180°
             =540°
          编辑推荐:
          2012年中考生心理调节必备五大妙方
          中考生早餐吃得要像“皇帝”一样
          决战中考:数学必做压轴综合题(20道)
          中考物理:用马铃薯确定电池正负极
          近五年全国中考语文名著阅读题集锦(500篇)
          中考英语作文预测及范文参考
          
页: [1]
查看完整版本: 多边形内角和问题的求解技巧