罗西第一次切乳酪的方法是在乳酪顶面的若干中线同时切数刀。乳酪具有如同薄饼那样平坦的顶面。让我们来观察一下,根据在一张薄饼上切数刀的过程,能够生成一些什么数字序列。假如沿着薄饼若干中线同时切数刀,显然,同时切 n 刀至多可以切出2n块。
若在其边沿为一条简单闭合曲线的任意平面上同时切下 n 刀,这种方法所切成的块数,是否最多也是 2n块呢?否。可以随意画出许多既非凸面,并且形状各异的平面,即使一刀也可切成你所希望的块数。能否画出一种图形,仅切一刀便可以切出任何有限数目的全等的块?若能办到,这种图形的周长应具有什么特性,才能确保只需要一刀便可以切成全等的 n 块?若不同时进行切分,薄饼的切分将更为有趣。你很快会发现:仅当 n〉=3 时,切 n 刀方可切成不止 2n 块。