中考论坛

 找回密码
 立即注册
查看: 47|回复: 0

整式的乘除与因式分解单元测试卷(填空题)

[复制链接]

33万

主题

33万

帖子

99万

积分

论坛元老

Rank: 8Rank: 8

积分
996394
发表于 2016-7-27 00:25:05 | 显示全部楼层 |阅读模式
填空题(每小题4分,共28分)
  7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________
  8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .
  9.(4分)(2004?万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示)
  整式的乘除与因式分解单元测试卷(填空题)
  10.(4分)(2004?郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 _________ .
  11.(4分)(2002?长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.
  (a+b)1=a+b;
  (a+b)2=a2+2ab+b2;
  (a+b)3=a3+3a2b+3ab2+b3;
  (a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.
  整式的乘除与因式分解单元测试卷(填空题)
  12.(4分)(2004?荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)
  第n年12345…
  老芽率aa2a3a5a…
  新芽率0aa2a3a…
  总芽率a2a3a5a8a…
  照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001).
  13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为 _________ .
  答案:
  7.
  考点:零指数幂;有理数的乘方。1923992
  专题:计算题。
  分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4;
  (2)根据乘方运算法则和有理数运算顺序计算即可.
  解答:解:(1)根据零指数的意义可知x﹣4≠0,
  即x≠4;
  (2)(2/3)2002×(1.5)2003÷(﹣1)2004=(2/3×3/2)2002×1.5÷1=1.5.
  点评:主要考查的知识点有:零指数幂,负指数幂和平方的运算,负指数为正指数的倒数,任何非0数的0次幂等于1.
  8.
  考点:因式分解-分组分解法。1923992
  分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2+b2﹣2ab正好符合完全平方公式,应考虑为一组.
  解答:解:a2﹣1+b2﹣2ab
  =(a2+b2﹣2ab)﹣1
  =(a﹣b)2﹣1
  =(a﹣b+1)(a﹣b﹣1).
  故答案为:(a﹣b+1)(a﹣b﹣1).
  点评:此题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组,要考虑分组后还能进行下一步分解.
  9.
  考点:列代数式。1923992
  分析:主要考查读图,利用图中的信息得出包带的长分成3个部分:包带等于长的有2段,用2x表示,包带等于宽有4段,表示为4y,包带等于高的有6段,表示为6z,所以总长时这三部分的和.
  解答:解:包带等于长的有2x,包带等于宽的有4y,包带等于高的有6z,所以总长为2x+4y+6z.
  点评:解决问题的关键是读懂题意,找到所求的量的等量关系.
  10.
  考点:平方差公式。1923992
  分析:将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.
  解答:解:∵(2a+2b+1)(2a+2b﹣1)=63,
  ∴(2a+2b)2﹣12=63,
  ∴(2a+2b)2=64,
  2a+2b=±8,
  两边同时除以2得,a+b=±4.
  点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.
  11
  考点:完全平方公式。1923992
  专题:规律型。
  分析:观察本题的规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可.
  解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.
  点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.
  12
  考点:规律型:数字的变化类。1923992
  专题:图表型。
  分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a,新芽数是13a,总芽数是34a,则比值为
  21/34≈0.618.
  解答:解:由表可知:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和,
  所以第8年的老芽数是21a,新芽数是13a,总芽数是34a,
  则比值为21/34≈0.618.
  点评:根据表格中的数据发现新芽数和老芽数的规律,然后进行求解.本题的关键规律为:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.
  13.
  考点:整式的混合运算。1923992
  分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可.
  解答:解:∵(x+2)2﹣1=x2+4x+4﹣1,
  ∴a=4﹣1,
  解得a=3.
  故本题答案为:3.
  点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键.
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-1-18 13:21 , Processed in 0.063793 second(s), 7 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表