|
数形结合思想
一:【要点梳理】
1.数形结合思想方法是初中数学中一种重要的思想方法.数是形的抽象概括,形是数的直观表现,用数形结合的思想解题可分两类:一是利用几何图形的直观表示数的问题,它常借用数轴、函数图象等;二是运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等
2. 热点内容
(1).利用数轴解不等式(组)
(2).研究函数图象隐含的信息,判断函数解析式的系数之间的关系,确定函数解析式和解决与函数性质有关的问题.
(3).研究与几何图形有关的数据,判断几何图形的形状、位置等问题.
(4).运用几何图形的性质、图形的面积等关系,进行有关计算或构件方程(组),求得有关结论等问题.
二:【例题与练习】
1.选择:
(1)某村办工厂今年前5个月生产某种产品的总量 c(件)
关于时间t(月)的图象如图所示,则该厂对这种产品来说( )
A.1月至3月每月生产总量逐月增加,4、5两月生产总量逐月减少
B.1月至3月每月生产总量逐月增加,4、5两月生产总量与3月持平
C.1月至3月每月生产总量逐月增加,4、5两月均停止生产
D.1月至 3月每月生产总量不变,4、5两月均停止生产
(2)某人从A地向B地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元每加 1分钟加收 1元,则表示电话费y(元)与通话时间(分)之间的关系的图象如图所示,正确的是( )
(3)丽水到杭州的班车首法时间为早上6时,末班车为傍晚18时,每隔2小时有一班车发出,且丽水到杭州需要4个小时.已知同一时刻有班车分别从杭州、丽水战发出.则班车在图中相遇的次数最多为( )
A.4次 B.5次 C.6次. D.7次
http://files.eduuu.com/ohr/2013/02/28/160237_512f0f1da83d8.zip
|
|